Environmental Health Perspectives
Vol. 81, pp. 169-188, 1989

Multistage Models for Carcinogenesis

by David A. Freedman™ and William C. Navidit

The multistage model is tested on several human and animal data sets. It fits in some cases but not in others.
With human lung cancer data, there is a drop in risk for ex-smokers quite different from the predictions of
the model. The results are not conclusive but are compatible with the view that the multistage model pro-
vides a family of curves that often fit cancer incidence data, but may not capture the underlying biological

reality.

Introduction

The Armitage-Doll multistage model says in essence
that a cell progresses to malignancy through the states
of a Markov chain (). This model is often used in cancer
risk assessment for example, by the U.S. Environmental
Protection Agency (2), and it is often cited in discussions
of the biological mechanisms of cancer, for example, by the
International Agency for Research on Cancer (3). It there-
fore seems worthwhile to review the model and assess its
fit to some of the main available data sets, which is the
object of the present paper.

To state the model a bit more carefully (4-6): A normal
cell goes through a definite sequence of stages until it be-
comes cancerous. Absent carcinogenic exposure, waiting
times in the various stages are assumed to be indepen-
dent, exponential random variables. So, there is a back-
ground rate of progression through each stage, which may
be different for the different stages.

An animal or a human tissue is a collection of cells and
fails (gets cancer) when the first cell in the collection fails.
Thus, the failure time for the tissue is the minimum of the
failure times of its component cells. Different cells are as-
sumed to be independent with identically distributed fail-
ure times.

The next assumption: If a subject is exposed to a car-
cinogen such as tobacco smoke, the rate of progression
through the various stages increases in proportion to
dose; the constant of proportionality depends on the
stage. For the insensitive stages, this constant is zero; for
the sensitive stages, the constant of proportionality is
positive. Stages that may be estimated as sensitive or in-
sensitive, depending on how the data turn out, will be
termed ‘“potentially sensitive.”
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In order for the usual approximations to work, it is also
necessary to assume that the time to pass through a stage
tends to be much larger than the lifetime of the animal
(7). The rates of progression through the various stages
are assumed to be the same for all cells and all subjects.
In risk assessment, constancy of certain rates is assumed
even across species.

With a final assumption, independence of competing
risks, the model can be used to generate a likelihood func-
tion for data; parameters can be estimated by maximum
likelihood. Then the adequacy of the fit can be assessed
by a chi-squared test. The intent was to follow this
strategy rigorously, but we ended up making some ap-
proximations for mathematical convenience, others to get
numerical algorithms to converge, and still others to ac-
commodate experimental designs.

In a strict modeling approach, the details become quite
irritating. Perhaps as a result, most published efforts to
assess the fit of the model tend to involve simple approx-
imations to the likelihood function, and goodness-of-fit
tests are seldom made (8-11). On the other hand, the
statistical strategy followed here is similar to that in
Brown and Hoel (12-13).

There are many variations on the model, for example,
allowing a latency period between malignancy and the
clinically observable end point. Polynomial dose response
at each stage has also been considered and transitions
from higher order to lower order states. Dose thresholds
are sometimes used or nonlinear transformations of time.
Random parameters are another option. There is little
doubt that, given a data set, one variation on the model
or another can be made to fit. Our question runs the other
way round: Given a version of the model, will it fit a vari-
ety of data sets? For that purpose, we elected to start
with the version described here, which is relatively sim-
ple and in general circulation.

Versions of the model are widely used in risk assess-
ment, although their biological basis is more than a little
obscure. In particular, despite remarkable progress on the
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Table 1. Summary of results.

Data set Species End point Results

British doctors Humans Lung cancer Fits; 5-8 stages; one or two
sensitive; heavy smokers
included

Veterans Humans Lung cancer Does not fit: p = 5/100,000

ACS Human males Lung cancer Marginal fit; p = 1% 6 stages
with 1st sensitive, or 7 stages
with 6th sensitive fails on
cross-validation

Human females Lung cancer Fits; 3 to 8 stages; one sensitive
Mega-mouse Mice Bladder tumors Does not fit
Liver tumors Fits; 7 stages, 2 sensitive
Peto et al. Mice Skin cancer Does not fit

identification of DN A lesions in tumor cells, there is still
no experimental verification of the assumptions in the
multistage model at the level of the cell. For example,
there is no general biological definition for the stages in
the model; in most cases, these remain purely hypotheti-
cal constructs (5,14-18). Striking recent papers on the
genetics of cancer include Bodmer et al. (19), Naylor et
al. (20), and Solomon et al. (21).

Results
Overview

This section will review the data sets considered and
summarize conclusions (Table 1). The most carefully
studied application of the model is to lung cancer, which
is considered first; then comes experimental data on
animals.

Other Findings on Lung Cancer. For the British doc-
tors, the Dorn veterans, and the ACS males, the model
overpredicts around the edges of the data set. Models
fitted to continuing smokers do not predict the risk for ex-
smokers at all well: The models predict that excess risk
will continue to increase (or stay constant) after quitting,
while the data show a decrease.

Human Lung Cancer

British Doctors. Doll and Peto report on smoking and
lung cancer in their seminal cohort study of British doe-
tors (9). The data quality is considered to be excellent;
dose was ascertained on three separate occasions. One
drawback is the absence of information on age at start of
smoking; following Doll and Peto, this is imputed as 22.5
years (including some allowance for the time from malig-
nancy to death). Furthermore, although the study lasted
20 years with about 34,000 subjects, the number of events
(lung cancer cases) is relatively small.

The data set used here, reported in Doll and Peto (9),
selects only subjects who smoked at a nearly constant
rate; only 215 events out of 571 are kept. The published
data on ex-smokers are not in usable form and the unpub-
lished data do not appear to be available.

Data on nonsmokers or current smokers are summa-
rized. For this cohort, there is a paradoxical drop in risk

(events per 1000 person years) for the highest dose group
and at the highest ages. This is more readily seen from
Doll and Peto’s table than from our aggregation (Tables
2 and 3).

A variety of models fit quite well, with five to eight
stages; models with four or nine stages did not fit. Previ-
ous work suggests five or six as the number of stages.
(The plural “models” refers to special cases of the singu-
lar “multistage model.”)

Is the dose response linear or quadratic? In the mul-
tistage model, this comes down to asking whether there
is one sensitive stage or two. This question has been much
debated. In our models, with five, six, or seven stages, the
first and next-to-last appear to be sensitive. With eight
stages, the first need not be sensitive. We view the data
on the British doctors as compatible with a linear or a
quadratic dose response; the latter provides a signifi-
cantly better fit. (For the veterans or the ACS volunteers,
a linear dose response fits about as well, or as badly, as
quadratic.)

We allow either the first and next-to-last stages, or the
first and last, to be sensitive. Both types of models give
similar fits on current smokers, but make very different
predictions for ex-smokers. The conventional choice is to
allow the first and next-to-last stages to be sensitive (22).

When such models are fitted to the continuing smokers,
the first stage usually turns out to be sensitive, and then
the model predicts that the excess risk will continue to
rise after cessation of smoking (Eq. 3). The rate of rise is
quite appreciable. It is commonly believed, however, that
the excess risk remains constant after cessation of ex-
posure. This belief and the model do not fit together. Fur-
thermore, the data suggest that the risk starts to drop on
cessation of smoking.

Coming back to the continuing smokers, Doll and Peto
(9) found it necessary to exclude the heavy smokers and
gave ingenious arguments based on measurement error
to justify the exclusion. They fit an appealing (but non-
multistage) model. Working fairly directly from the likeli-
hood function given by the model, the fit is good whether
the heavy smokers are kept in or not. The tables include
the heavy smokers and a broader age range than that al-
lowed by Doll and Peto (25-84 years). On the other hand,
different parts of the data set do look different: A model
fitted to the data used by Doll and Peto (age 40-79, dose
40 or less) overpredicts risk for the rest.
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Table 2. The British doctors: Events/person years.?
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Dose, cigarettes/day, range and (mean)

Age, 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-40 40+
years 0 2.7 (6.6) (11.3) (16.0) (20.4) (25.4) (30.2) (38.0) (50.9)
20-24 0/378 0/19.5 0/38 0/91.5 0/91 0/57 0/7.5 0/2 0/2.5 0/0
25-29 0/5099.5 0/400 0/701.5 0/1529 0/1427 0/1424 0/304.5 0/153 0/46 0/10.5
30-34 0/10838 0/914 0/1762.5 0/3270 0/3343 0/3966.5 0/1042.5 0/582.5 0/224.5 0/32.5
35-39 1/15105 0/1156.5 0/2178 0/3819.5 0/4649.5 0/6003.5 0/1991.5 0/1108.5 0/545.5 0/110.5
40-44 0/17846.5 0/1216 0/2041.5 1/3795.5 0/4824 1/7046 0/2523 1/1715.5 0/892.5 0/234
45-49 0/15832.5 0/1000.5 0/1745 1/3205 1/3995 1/6460.5 2/2565.5 2/2123 0/1150 0/305.5
50-54 1/12226 0/853.5 0/1562.5 212727 4/3218.5 6/5583 3/2620 3/2226.5 3/1281 0/335.5
556-59 2/8905.5 1/625 0/1355 1/2288 0/2466.5 8/4357.5 5/2108.5 6/1923 4/1063 1/284
60-64 0/6248 1/509.5 1/1068 1/1714 2/1829.5 13/2863.5 4/1508.5 11/1362 7/826 1/183.5
65-69 0/4351 0/392.5 1/843.5 2/1214 2/1237 12/1930 5/974.5 9/763.5 9/515 1/120
70-74 1/2723.5 1/242 2/696.5 4/862 4/683.5 10/1055 7527 2/317.5 5/233 2/52
75-79 2/1772 0/208.5 0/517.5 4/547 5/370.5 7/512 4/209.5 2/130 2/88.5 0/18.5
80-84 0/1185.5 0/173 0/281 1/314 1/180.5 1/188 0/81 2137 1/36 0/2.5
85+ 0/870.5 0/77.5 0/149 0/123.5 1/61.5 1/67.5 0/28 0/1 0/.5 0/0
“Reproduced from Doll and Peto (9). Doll and Peto use the data inside the smaller box; we use the data in the larger box.
Table 3. The British doctors: Events/person years, aggregation of the data from Table 2.*
Dose, cigarettes per day
Age 0 1-9 10-19 20-29 30-40 41 or more
54 or less 2/76,948 0/15,532 9/39,863 13/41,530 9/12,048 0/1,028
55 to 64 2/15,154 3/3,558 4/8,298 30/10,838 28/5,174 2/468
65 to 74 1/7,074 4/2,174 12/3,996 34/4,486 25/1,829 3/172
75 or more 2/2,958 0/1,180 11/1,412 12/990 71292 0/21

*Age range 25 to 84 years; heavy smokers included.

Dorn Veterans. Kahn (23) reports on Dorn’s cohort
study of about 300,000 American veterans, begun in 1954;
also see Rogot (24) and Whittemore (25). The data used
here come from a tape supplied in 1981 by the National
Cancer Institute (NCI) under the Freedom of Informa-
tion Act. This tape combines the 1954 and 1957 cohorts,
reports on follow-up through 1969, and has been edited
by NCI personnel. Data on the tape therefore differ from
tables in Kahn (23).

The data quality may be questioned; in particular, dose
was ascertained only once. On the positive side, this data
set is quite large (1266 events); it has information on age
at start of smoking and it includes ex-smokers. The risk
for current smokers increases with dose.

This data set is sometimes cited as supporting the
model (10). However, as far as we can see, no version of
the model fits the veterans data. For nonsmokers and cur-
rent smokers, the best had six stages, with only the fifth
being sensitive: X*> = 50 on 17 degrees of freedom, p =
5/100,000. Residuals (observed — expected) were quite
regular, tending to be negative at the lowest or highest
age and dose groups, positive at intermediate groups.

When this model was used to predict the risk for ex-
smokers as a function of years since quitting, the ratio of
observed to expected decreased steadily: Indeed, the ex-
cess risk in the model remains constant, while the data
show a drop in risk.

ACS Volunteers. This study is described by Hammond
(26). L. Garfinkel of the ACS provided a table of person-

years and events for current smokers over the period July
1960 to June 1965, by age, age at start of smoking, dose,
and sex. (The table differs in some respects from pub-
lished data.) This is the only study with substantial num-
bers of women. Because of the large number of subjects
(about 440,000 men and 570,000 women) there are a lot of
events: 1542 for the male smokers, 164 for the females.
The men smoked more heavily than the women and had
higher cancer rates even controlling for smoking.

The data quality seems good. The risk for smokers goes
up with dose. There is some deficit in events beyond age
79. This can be detected in the original data, but gets lost
in the aggregated Table 10. The increased risk for ages
75 to 79 swamps the decrease in ages 80 and beyond,
where the number of person-years is relatively small.

For current male smokers, models with 3 to 10 stages
were tried. The best-fitting had 6 stages (X*> = 28 on 13
degrees of freedom, p = 1%); the estimated sensitivity for
the fifth stage was negligible. Compared to 1542 events,
the fit seems good. However, the pattern of residuals was
as in the veterans study. Rates for the nonsmokers, esti-
mated from the current smokers through the model, were
much higher than the observed rates. Largely by acci-
dent, we got the data on never-smokers or ex-smokers
only after fitting the models, so there was a genuine op-
portunity for cross-validation.

For current female smokers, a variety of models fit, with
three to eight stages; the best was five stages; almost any
pattern of sensitivity is obtainable. Estimated back-
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ground rates are unreasonably low; indeed, such rates can
be constrained to zero without any trouble.

Animal Data Sets

With human lung cancer data, dosimetry is problematic;
the accuracy of diagnosis is open to question too. In prin-
ciple, experimental data on animals should be better. Of
course, animal experiments have problems of their own
(16). Perhaps surprisingly, it is not so easy to get animal
data suitable for testing multistage models. In particular,
data on times of tumors are seldom published. (The
NCI/NTP bioassays might be a good data source, if
properly pooled.)

Mega-Mouse Study. This experiment is described by
Staffa and Mehlman (27); see especially Littlefield et al.
(28). The experiment involved about 24,000 mice; the car-
cinogen was 2-acetylaminofluorene (2-AAF); bladder
tumors and liver tumors were the two end points.

A serial sacrifice design was employed. One group of
animals was on continuous exposure. For a second group,
exposure ceased at predetermined times before sacrifice.
For all animals other than controls, exposure started at
birth; this eliminates one interesting variable from the
multistage model and reduces power in testing it.

Like other authors (12-13), we could not fit a multistage
model to the bladder cancer data. With liver cancer, the
model does fit a substantial part of the data, but then ex-
trapolations to the rest of the data set are not so success-
ful (27-31).

Peto Mice. The object of the beautiful experiment
described in Peto et al. (10) was to demonstrate that du-
ration rather than aging per se affects cancer risk. The
carcinogenic agent was benzpyrene painted on the skin.
The end point was malignant skin cancer. No control
group was provided, probably because the tumor has no
spontaneous incidence. Only one dose level was used,
limiting the power of statistical tests. Painting was started
at 10, 25, 40, or 55 weeks of age. The point is that inci-
dence depends on duration of exposure not age at start,
but Peto et al. do not really test the fit of the multistage
model to the data. Further arguments are given by Peto,
Parish, and Gray (32). Peto et al. report a strong, if para-
doxical, effect for age at start of dosing with NDEA (33);
also see Drew et al. on vinyl chloride (34), or Ames more
generally (35).

Collapsing the data seemed advisable to improve the
asymptotics and the power (6). We tried models with five
through nine stages, the first and next-to-last being poten-
tially sensitive. The best model had six stages, and x*> =
67 on 37 degrees of freedom, p = 2/1000.

As will be argued, even setting aside the question of
whether the model fits the data, the experiment cannot
really separate age from duration within the multistage
framework, because the stages in the model are statisti-
cal constructs, with no biological definition.

Simulation Studies
In the present context, simulation studies (6) show that

maximum likelihood estimates and x* tests perform quite
well although difficulties are created by sparse cells and
positivity constraints. Parameter estimates are far from
normally distributed, due to end point effects so Wald’s
analog of the t-test does not perform well. In the present
context, the X? statistic is preferred to the likelihood ra-
tio statistic. Differencing the X”s to test constraints is
reasonably effective and agrees with results from the
score test; in general, the latter may be preferred. Refer-
ences on the theory are Lehmann (36,37 ), Kalbfleisch and
Prentice on failure-time data (38), and Rao on the score
test (39).

Discussion

With lung cancer, there is substantial conflict among the
various data sets as to the sensitivity of the stages; pro-
jected risks for nonsmokers or ex-smokers are inconsis-
tent with observations. Likewise, in the mega-mouse
study, there is some difficulty in extrapolating from one
part of the data set to another (high risk to low risk, or
continuous exposure to ceased exposure); bladder cancer
does not fit at all. Such discrepancies make it less likely
that the model is correctly describing the mechanisms of
carcinogenesis and tend to undercut the reliability of the
model in risk assessment. However, the findings are con-
sistent with the view of the model as a family of curves
that more or less fit various data sets without necessar-
ily capturing the underlying biological reality.

Of course, testing the multistage model on data raises
questions not only about the model but also about the
data. The model could be wrong, or the data, or both. For
example, take the British doctors. The model predicts too
many cases among the heavy smokers and the older co-
hort members. This may reflect a failure of the model or
flaws in the data. Thus, Doll and Peto (9) argue that the
heavy smokers have overreported their smoking habit, or
in the alternative that such smokers inhale less. For older
persons, diagnostics may be poorer or these persons may
be more cancer-proof; the latter idea goes back to Pearl
(40).

Other possible explanations for lack of fit in such cases
include individual differences in model parameters, per-
haps due to genetic variation; dependence of competing
risks; relatively longer times from malignancy to death
for younger cohort members; and underreporting of dose
by light smokers. Changes in the composition of cigarettes
over time are another complication. Later age at start of
smoking among older cohort members should also be con-
sidered, as in Stevens and Moolgavkar (41); however, this
does not fit so well with the veterans or ACS data, where
controlling for age at start of smoking makes little impact
on the deficit in events at old age.

Up to a point, judgment calls in fitting may be in order,
especially if there is some corroborating evidence. On the
other hand the data can almost always be censored or ad-
justed so a multistage model fits, or the model can be
tuned a little to fit the remaining data. Moreover, factors
that affect those portions of the data where the model
seems not to fit may also affect the region where the fit



MULTISTAGE MODELS FOR CARCINOGENESIS 173

seems good, so the fit can be just as much an artifact as
the lack of fit. Ultimately, censoring the data or tuning
the model to the data blunt the force of empirical conclu-
sions.

Some readers may find our approach of fitting the
model and testing by chi-squared or making extrapola-
tions and checking them too mechanical. The model does
provide a rich and loosely defined class of polynomials for
describing data, a heuristic for suggesting hypotheses
about biological mechanisms, a demonstration that the
power law for incidence rates is compatible with a series
of discrete cellular changes, and a source of beautiful
mathematical puzzles. If those were the only virtues at-
tributed to the model, our critical approach might be out
of line. However, quite literal and dogmatic inferences are
sometimes drawn from the model, particularly in the field
of risk assessment. A strict approach to testing such a
model may be in order.

Other readers may be concerned, and rightly so, about
the sample size issue: With a large enough sample, any
model may be rejected. Our results do suggest that the
multistage model will be accepted when the number of
events is relatively small and rejected when the number
is relatively large. On the other hand, one conventional ar-
gument for the statistical version of the multistage model
is that it fits the data. While failure to fit may not prove
the model to be wrong, it cannot show the model to be
right. Patterns of error in the fit, discrepancies among co-
horts, and systematic errors in prediction seem relevant
in assessing the merits of the conventional evidence for
the model.

Our view is that on the whole, fitting the multistage
model to cancer incidence data in humans or in bioassays
does not seem likely to yield much new understanding
about the mechanisms of cancer, unless the modeling
results can be rigorously checked against observable
phenomena, in the lab and in human populations. Relia-
ble procedures for estimating cancer risks seem to be a
long way off, barring some breakthrough in the biologi-
cal understanding. Some of the alternative models are
worth exploring (18).

Cook, Doll, and Fellingham show that while many can-
cer incidence data sets fit the model, many others do not,
and problems with adjustments are discussed (8). Doll and
Peto felt that the multistage model was a promising ave-
nue to explore “even if current knowledge is too sparse
for such models to be tested critically” (9). Peto reviews
the biological evidence (42); Doll and Peto cannot be
described as enthusiastic about dose-response models in
risk assessment (43). Also see Wald and Doll (44). Ar-
mitage says that “Until and unless we obtain direct evi-
dence about the presence and nature of intermediate
stages, any statistical theory is likely to remain largely
unfalsifiable, particularly if it is allowed to be modified
with the flexibility to which we have become accustomed”
(45).

For recent somewhat critical reviews, see Freedman
and Zeisel (16) and Kaldor and Day (17). On the positive
side see Lave (46), Vouk et al. (47), and Zeise et al. (48).
Proponents of risk assessment have suggested reading

the Food and Drug Administration report on saccharin as
an example of what can be done (49). For critical comment
on those risk assessments, see the National Academy of
Sciences report on saccharin (50).

Detailed Results for Lung Cancer
Introduction

This section will report details of the modeling results
on the three main lung cancer data sets: the British doc-
tors, the Dorn veterans, and the ACS volunteers. Lung
cancer data are usually modeled with one early stage and
one late stage allowed to be sensitive; the first and next-
to-last are the conventional choices. Dose will be meas-
ured in cigarettes per day; Ty denotes the age at start of
smoking; for ex-smokers, T denotes the age at quitting.

Consider the hazard rate h(t) given by a multistage
model, with the following interpretation: A person who
survives to age t has chance h(t)dt of contracting lung can-
cer in the time interval (t,t + dt). The formulas for h(t) are
derived in Whittemore and Keller (4); Kalbfleisch et al. (5);
and Freedman and Navidi (6); the relevant ones are pre-
sented here. Equations 1-3 describes an n-stage model,
with the 1st and n-1st potentially sensitive. Nonsmokers
are covered by Equation 1, current smokers by Equation
2, and ex-smokers by Equation 3. The dose rate is as-
sumed constant over the period of smoking:

Atr! [1]
At"! + Bdose(t"! - To" 1)

+ Cdose(t — Ty)"!

+ Ddose?(t — Ty)"! (2]
At"! + Bdose(T, ™! To"™ )
+ Cdose[(t—To)" ! = (t = T ')

+ Ddose?(T; - To)"! 3]

In Equations 4-6, stages 1 and n are potentially sensi:
tive; again, Equation 4 is for nonsmokers, Equation 5 is
for current smokers and Equation 6 for ex-smokers. Equa-
tion 4 makes sense for n > 3; Equation 5, for n > 2.

Attt (4]
At""' + Bdoset"!

+ Cdose (t — TY"~! + Ddose? (t — T)" ! (5]
Att!

4+ Cdose [(t =T)" '=(t =T} (6]
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The number of events in each cell of the basic cross tab
(Table 2 for the British doctors) is taken to be Poisson, and
independent from cell to cell. The expected number in a
cell is the hazard rate times the number of person years.
The latter is treated as constant in the modeling, even
though it is slightly random. This last approximation
seems to be quite good in the present context (6); for
asymptotic theory, see Aalen (51) and Jacobsen (52). The
independence of competing risks is needed to compute
the expected value.

After suitable aggregation of the data, the coefficients
in models Equations 1-3 and Equations 4-6 can be esti-
mated by maximum likelihood, and then the goodness-of-
fit can be assessed by the X? statistic:

x% = Z(obs — exp)?/exp m

We also considered using the Neyman-Pearson likelihood
ratio statistic (or Wilks statistic):

Irs(X) = 2{supeeglog L(XIO)
- supgen log L(X10)}

Here, L is the likelihood function, X the data, and 6 the
parameter vector, for example, the 24 Poisson means for
the British doctors (Table 3). The first sup is over the set
G of all parameter vectors, namely, the saturated Poisson

(8]

model. The second sup is over N, the set of 6’s correspond-
ing to multistage models. Simulation results (6) suggest
that x* has close to its asymptotic chi-squared distribu-
tion, while Irs is a little too big.

The coefficients A,B,C,D in Equations 1-3 and 4-6 must
be nonnegative, and satisfy the constraint AD = BC. The
coefficient A reflects background rates only; B includes
the sensitivity of the late stage; C, the sensitivity of the
early stage; D, the sensitivity of both stages. f B=D =
0, then the late stage is insensitive; if C = D
= 0, the early stage is insensitive (6).

If stages 1 and n are sensitive, ex-smokers show an
abrupt drop in predicted risk: As t increases from just be-
low T to just above T, the hazard rate jumps down, be-
cause terms involving the sensitivity of that stage drop
out (compare Eq. 3 with Eq. 6 at t = T;). In other words,
the hazard reverts to that of an n-stage model with only
the first stage sensitive. This discontinuity is a well-
known feature of last-stage sensitivity and is an argument
against such models. The British doctors’ data are too thin
to reject implausible models. Equally, these data cannot
provide strong evidence in favor of preferred models.

British Doctors

Tables 4 and 5 show the empirical results for the non-
smokers and current smokers among the British doctors,

Table 4. Modeling results for the British doctors.?

n A B C D x? Comment

3 0.21 0.0055 0.50 0.013 101 Does not fit
0.09 0.0056 0.18

4 0.41 0.011 1.46 0.038 43 Does not fit,
0.17 0.011 0.49 p = 3/1000

5 0.80 0.035 2.76 0.12 21 Fits: 1st and 4th stages
0.31 0.033 1.25 sensitive

5 0.77 b 5.78 b 27 Fits, but X} = 5.5
0.31 b 0.43 1st stage only sensitive

6 1.50 0.45 1.16 0.35 20 Fits: 1st and 5th stages
0.54 0.22 0.88 sensitive

6 1.32 1.47 b b 42 Does not fit; 5th stage
0.53 0.11 b only sensitive

7 2.16 1.44 0.73 0.49 23 Fits; 1st and 6th stages
0.85 0.33 0.51 sensitive

7 2.07 2.36 b b 30 Fits, but Xf = 7.5;
0.83 0.18 b 6th stage only sensitive

8 3.13 3.21 0.35 0.36 30 Fits; 1st and 7th stages
1.28 0.52 0.42 sensitive

8 3.11 3.69 b b 31 Fits; 7th stage only
1.27 0.28 b sensitive

9 4.52 5.61 0.00 0.00 43 Does not fit
1.86 0.79 0.56

10 6.39 8.33 0.00 0.00 67 Does not fit

2.66 1.17 1.08

2Current smokers of cigarettes only at constant dose and nonsmokers. Dose is in cigarettes per day. There are n stages; 1 and n-1 are allowed to
be sensitive. SEs are shown below estimates. Estimates are constrained to be nonnegative. Coefficients estimated as 0 are reported as 0.00. The
estimates and SEs should be divided by 10>**'. The age range is 25-84, heavy smokers included. There are 21 degrees of freedom for X> A variety

of models fit.
*Estimate has been forced to 0.

x} is the difference between the x?s for the restricted and unrestricted models.
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Table 5. Modeling results for the British doctors.?

n A B C D X Comment

3 0.20 0.0046 0.53 0.012 102 Does not fit
0.09 0.0048 0.18

4 0.40 0.0010 1.40 0.036 43 Does not fit
0.17 0.0010 0.49

5 0.80 0.034 2.78 0.12 22 Fits; 1st and 5th stages
0.31 0.032 1.24 sensitive

5 0.77 b 5.78 b 27 Fits, but X} = 5.55
0.31 b 0.43 1st stage only sensitive

6 1.51 0.44 1.23 0.35 20 Fits; 1st and 6th stages
0.54 0.21 0.92 sensitive

6 1.32 147 b b 42 Does not fit; 6th stage
0.53 0.11 b only sensitive

7 2.16 1.42 0.75 0.49 23 Fits; 1st and Tth stages
0.85 0.33 0.52 sensitive

7 2.07 2.36 b b 31 Fits, but X} = 7.5;
0.84 0.18 b Tth stage only sensitive

8 3.13 3.20 0.36 0.37 30 Fits; 1st and 8th stages
1.28 0.52 0.42 sensitive

8 3.11 3.68 b b 31 Fits; 7th stage only
1.27 0.28 b sensitive

9 4.52 5.61 0.00 0.00 43 Does not fit
1.86 0.79 0.56

10 6.39 8.33 0.00 0.00 67 Does not fit

2.66 1.17 1.08

2Current smokers of cigarettes only at constant dose and nonsmokers. Dose is in cigarettes per day. There are n stages; 1 and n are allowed to
be sensitive. SEs are shown below estimates. Estimates are constrained to be nonnegative. Coefficients estimated as 0 are reported as 0.00. The
estimates and SEs should be divided by 102" * !, The age range is 25-84, heavy smokers included. There are 21 degrees of freedom for X>. A variety ‘

of models fit.
YEstimate has been forced to 0.

°x? is the difference between the X*'s for the restricted and unrestricted models.

with Equations 1 and 2 and Equations 4 and 5, respec-
tively; heavy smokers are included in both tables, and the
age range is 25 to 84 years.

The tables are remarkably similar because the only dif-
ference between Equations 2 and 5 is in the second term.
In that term, t"' dwarfs To™' when t is upwards of 50 or
so, where all the lung cancer cases are. So the two for-
mulas are virtually identical for current smokers. In
either case, a variety of models fit the data. There are only
about 200 events, and that is not enough to pin things
down.

Standard errors shown in the tables are computed from
the Fisher information matrix, and the usual asymptotics
do not apply when estimated coefficients are close to 0.
There could be a similar issue for the chi-squared test.
Searching over n creates another problem. However,
simulation studies (6) suggest that in the present context,
these problems are not serious, except the distribution of
some of the estimates is quite asymmetric and long-tailed.
That may be the reason why in the six-stage model, con-
straining C to 0 makes a big difference in X*, although the
estimate is only 1.3 times the standard error. The Wald
t-test is not appropriate here (6,53,54).

Doll and Peto fit their model on the age range 40 to 79
and dose range 0 to 40. As a final test, we fit the six-stage
model on this portion of the data (X* = 12 on 20 degrees
of freedom) and use it to predict the rest of the data (ages

25-84 and any dose). The data beyond age 85 are elimi-
nated in view of the deficit in events among the oldest per-
sons; the data on ages 20 to 24 are eliminated too, since
age at start of smoking was imputed as 22.5.

The predictions are systematically too high. In total,
there are 32 events predicted and 12 observed; by simu-
lation, p = 3/1000 (6). Even for those aged 80 to 84 and
smoking 40 cigarettes a day or less the predicted is too
high: 16, with 6 observed. The predicted number is also
too high among those aged 39 or less and smoking 40
cigarettes a day or less, but that could easily be a matter
of chance.

The model fitted by Doll and Peto to the non-smokers
and current smokers is not exactly a multistage model:

(a + bdose)?(t — 22.5)""! [8a]

This fits into the multistage framework only by having
smokers and nonsmokers alike start on the progression
to malignancy at age 22.5; compare Equations 11 and 12.
However, for the British doctors, the A-term in Equation
2 is rather small, and the B-term can more or less be ap-
proximated by a multiple of (t—22.5)"".

Doll and Peto take To = 22.5; they report an average
age of 19 at start of smoking and add 3.5 years for latency.
We redid the tables with To = 19; the fit was worse for
n = 3,4,5, but very similar for larger n.
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Dorn Veterans

The modeling results for the Dorn veterans are
reported in Table 6. The best model for the current
smokers has six stages, but does not fit (p = 5/100,000).
In this model, only the late stage is sensitive. (By compar-
ison, the six-stage model for the doctors has both stages
coming in.) With only the late stage sensitive, the model
predicts almost no response to age at start of smoking;
those who start early and those who start late will have
nearly the same risks. In reality, of course, starting early
causes a huge increase in risk (55).

Next, Table 7 shows the observeds and person-years in
the veterans data. Table 8 shows the residuals from the
six-stage model in Table 6. On the whole, the residuals
seem to be negative around the edges of the table and
positive in the middle. For persons aged 75 or more, some
of the discrepancies may be practically significant as well
as statistically significant.

ACS Volunteers

Table 9 gives results for the ACS men. The best-fitting
model has six stages (p = 1%); the effect of the late stage
is insignificant. When used to predict the risk for non-
smokers, this model predicts 500 + 60, with 99 observed,
p < 1/1,000,000. (This sort of cross-validation has two ad-
vantages: to some extent, it corrects for data snooping;
and to some extent, it picks up heterogeneity in the data.)

The data for the ACS men are shown in Table 10. The
residuals in Table 11 resemble the veterans data in pat-
tern of signs. For all three data sets (the doctors, the vet-
erans, and the ACS men), the best-fitting models over-
predict risk around the edges. Of course, the model could
be right and this pattern could be artifactual.

Many models fit the data for ACS female current
smokers including those with no background rate (Table

12): extrapolating on that basis from smokers to non-
smokers shows the latter will not get lung cancer. Such
models would not be making good predictions, as ACS fe-
male nonsmokers get lung cancer at fairly high rates.
Even the best-fitting model predicts 100 + 150 events,
with 229 observed. The trouble is that the ACS women
smokers only have 164 events. As for the British doctors
there are not enough events to pin things down.

Ex-Smokers

Models fitted to current smokers do not predict well for
ex-smokers, as noted above. The discussion is continued
in this section. There seems to be general agreement that
when smokers quit, their excess risk freezes (22,42,55,56).
Absolute risk (background + excess) must therefore in-
crease as a function of time since quitting. However, the
data show a drop in risk on cessation of smoking.

To illustrate the predictions, Table 13 computes risks
from three multistage models: the ones that best fit the
nonsmokers or current smokers among the British doc-
tors, the American veterans, and the ACS men (six stages
with first and fifth allowed to be sensitive; for the ACS
men, the model is fitted to current smokers only). The
risks are computed for three groups of men: NON, the
nonsmokers; CS, the current smokers with age at start
22.5 and constant dose of a pack a day; EX, the ex-
smokers, who started smoking like CS but quit at age 50.

To compute the table, the models given by Equations
1 and 2 are fitted to the nonsmokers and current smokers
to estimate the coefficients A,B,C,D. Then Equation 1 is
used to compute the risk for nonsmokers, 2 is used for the
current smokers, and 3 is used to project the risk for ex-
smokers.

One problem is that the projections of the three models
are quite discrepant. For an extreme example, take the

Table 6. Modeling results for the Dorn veterans.?

n A B C D x? Comment
3 0.56 0.00 0.58 0.00 130 Does not fit
0.042 0.0016 0.05
4 0.83 0.00 1.27 0.00 69 Does not fit
0.06 0.002 0.11
5 1.24 0.00 2.66 0.00 58 Does not fit
0.09 0.003 0.23
6 1.75 1.01 0.00 0.00 50 Best fit, p = 5/100,000
0.13 0.072 0.02 5th stage only sensitive
7 2.51 1.50 0.00 0.00 70 Does not fit
0.19 0.11 0.04
8 3.55 2.21 0.00 0.00 118 Does not fit
0.27 0.16 0.07
9 4.99 3.21 0.00 0.00 196 Does not fit
0.38 0.23 0.14
10 6.96 4.64 0.00 0.00 309 Does not fit
0.53 0.32 0.24

#Current smokers of cigarettes only and nonsmokers. Dose is in cigarettes per day. There are n stages; 1 and n-1 are allowed to be sensitive. SEs
are shown below the estimates. Estimates are constrained to be nonnegative. Coefficients estimated as 0 are reported as 0.00. The estimates and
SEs should be divided by 10>** . There are 17 degrees of freedom for X>. No model fits.
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Table 7. The Dorn veterans: Events/person-years, current smokers of cigarettes only and nonsmokers.

Dose, cigarettes per day
Age 0 1-9 10-20 21-39 40+
Below 55 2/84,401 0/9,366 19/72,002 23/46,532 3/4,728
55-64 25/212,448 18/16,417 111/67,593 129/48,307 37/9,860
65-74 119/363,152 25/27,460 294/94,061 258/53,278 72/10,072
75 or more 27/75,499 2/5,164 63/13,959 31/5,595 8/906

Table 8. Residuals for the Dorn veterans, from the best-fitting model in Table 6.*
Residuals O/E

Dose, cigarettes per day
Age 0 1-9 10-20 21-39 40+
Below 55 -1 -1 -3 -5 -2
55-64 -6 9 19 5 -4
65-74 16 -5 44 -8 -9
75 or more -12 -8 -4 -19 -5

2The model overpredicts around the edges and underpredicts in the middle, for current smokers of cigarettes only and nonsmokers.

Table 9. Results for the ACS male current smokers.?

n A B C D x? Comment
3 1.58 0.00 0.25 0.00 315 Does not fit
0.31 0.008 0.07
4 2.54 0.00 0.64 0.00 127 Does not fit
0.48 0.01 0.16
5 4.51 0.00 1.45 0.00 38 Does not fit
0.75 0.02 0.35
6 9.02 0.028 2.52 0.0077 28 p = 1%; 1st and 5th stages
1.07 0.047 0.73 sensitive
6 8.59 b 3.00 b 28 p = 1%; 1st stage only
1.01 b 0.23 sensitive
7 11.15 0.99 0.00 0.00 30 p = 0.5 of 1%;
1.82 0.16 0.22 6th stage only sensitive
8 14.91 1.70 0.00 0.00 68 Does not fit
2.72 0.23 0.33
9 19.09 2.84 0.00 0.00 158 Does not fit
4.00 0.34 0.51
10 23.29 4.63 0.00 0.00 305 Does not fit
5.77 0.50 0.72

*Nonsmokers are excluded. There are n stages; 1 and n-1 are allowed to be sensitive. Dose is in cigarettes per day. SEs are shown below the esti-

mates. Estimates are constrained to be nonne;
10>"* !, There are 13 degrees of freedom for X

. The six-stage model barely fits.

*Estimate has been forced to 0.

%ative. Coefficients estimated as 0 are reported as 0.00. The estimates and SEs should be divided by

Table 10. ACS men: Events/person-years, current smokers only.

Dose, cigarettes per day

Age® 1-9 10-19 20-39 40+
Below 55 24/62,581 62/127,178 355/445,541 98/96,678
56-64 38/32,915 116/58,558 403/147,636 102/25,885
65-T4 23/13,249 76/19,981 189/32,233 24/3,516
75 or more 6/2,211 11/2,333 14/2,375 1/178

*Age is at the beginning of the study, in 1959.
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saving in relative risk at age 75 from quitting at age 50,
namely, 1 -(EX/CS). From the model fitted to the doctors
or the veterans, this is estimated as 80%. But from the
ACS men, the estimate is only 7%.

The main point is that the predictions seem to be
qualitatively wrong. The predicted excess risk (EX -
NON) increases steadily for the doctors and the ACS
men, rather than freezing: the reason is that in the model,
the first stage is sensitive, so the C-term in Equation 3
is positive and increasing. The excess risk is predicted as
constant for the veteran ex-smokers because only the late
stage is sensitive, so the excess risk is the B-term in
Equation 3. The predicted absolute risk for ex-smokers
increases rapidly with time since quit for all three models,
as in Table 13.

Table 14 shows the observed and expected number of
lung cancer cases among the veteran ex-smokers. The ex-

Table 11. Residuals for the ACS men from the six-stage model with
first and fifth stages sensitive in Table 9.?

Residuals O/E
Dose, cigarettes per day
Age 1-9 10-19 20-39 40+
Below 55 -1 -6 16 -12
55-64 -0 17 29 5
65-74 -10 1 -1 -8
75 or more -5 -7 -16 -3

“The model overpredicts around the edges and underpredicts in the
middle for current smokers.

pected are from the six-stage model of Table 6: Equations
1 and 2 are fitted to the nonsmokers and current smokers,
then Equation 3 is used to predict the risk for the ex-
smokers. The model underpredicts in the early years and
then overpredicts. (Of course, part of the reason for ex-

Table 12. Results for the ACS female current smokers.?

n A B C D x? Comment
3 0.14 0.032 0.0027 0.00062 16 Fits
0.13 0.025 0.0095
3 0.098 b 0.10 b 15 Fits; 1st stage
0.086 b 0.014 only sensitive®
3 b b 0.11 b 17 - Fits; 1st stage only and
b b 0.0089 no background
4 0.24 0.059 0.0064 0.0016 8 Fits; 1st and 3rd stage
0.24 0.039 0.024 sensitive
4 0.19 b 0.30 b 8 Fits; 1st stage only
0.16 b 0.043 sensitive
4 b b 0.35 b 10 Fits; 1st stage only and
b b 0.027 no background
5 0.34 0.12 0.0079 0.0027 6 Fits; 1st and 4th
0.43 0.062 0.040 stages sensitive
5 0.26 0.13 b b 6 Fits; 4th stage only
0.30 0.019 b sensitive
5 b 0.15 b b 7 Fits; 4th stage only and
b 0.011 b no background
6 0.43 0.24 0.0018 0.00097 8 Fits; 1st and 5th
0.75 0.10 0.048 stages sensitive
6 0.41 0.24 b b 8 Fits; 5th stage only
0.53 0.033 b sensitive
6 b 0.26 b b 9 Fits; 5th stage only and
b 0.020 b no background
7 0.61 0.43 0.00 0.00 15 Fits; 6th stage only
1.27 0.17 0.09 sensitive
7 b 0.46 b b 15 Fits; 6th stage only and
b 0.036 b no background
8 0.84 0.76 0.00 0.00 25 P =2%
2.11 0.27 0.17
9 1.03 1.31 0.00 0.00 40 Does not fit
3.41 0.43 0.28
10 1.00 2.22 0.00 0.00 60 Does not fit
5.37 0.67 0.36

*Nonsmokers are excluded. There are n stages; 1 and n-1 are allowed to be sensitive. Dose is in cigarettes per day. SEs are shown below the esti-
mates. Estimates are constrained to be nonnegative. Coefficients estimated as 0 are reported as 0.00. The estimates and SEs should be divided by
10>"*!, There are 138 degrees of freedom for X. A variety of models fit, including quite implausible ones. In these data, either B or C and A can be

constrained to 0; not all possibilities are reported.
*Estimate has been forced to 0.

°The fit is by maximum likelihood, not minimum X?; occasionally, constraints will improve the X2
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Table 13. Predicted lung cancer deaths per 100,000 person years for nonsmokers, current smokers, and ex-smokers.*

Doctors Veterans ACS men
Age NON CS EX NON CS EX NON CS EX
50 5 58 58 6 67 67 28 38 38
55 8 112 66 9 109 71 45 68 66
60 12 202 8 14 170 76 70 114 110
65 17 348 99 20 254 82 105 185 176
70 25 571 130 30 368 92 152 290 274
75 36 900 175 42 520 104 214 441 412

2Age at start of smoking is 22.5 years, and dose is a pack per day; the ex-smokers quit at age 50. The risks are predicted from multistage models
fitted separately to three cohorts. The models are inconsistent with each other, and the results are incompatible with the freezing of excess risk on
quitting. Non, nonsmokers; CS, current smokers; Ex, ex-smokers.

Table 14. Veterans ex-smokers: Observed lung cancer deaths and numbers expected from the six-stage model in Table 6.*

Years since Person- Observed per
quit® years Observed 100,000 person-years Expected O/E
0-4 15,693 26 166 20.4 1.27
5-9 33,633 45 134 41.1 1.09
10-14 41,786 52 124 46.9 1.11
15-19 35,008 25 71 33.1 0.76
20-24 27,878 11 39 174 0.63
25-29 21,844 6 27 10.8 0.55
30-34 13,426 4 30 6.6 0.61
35+ 4,212 0 0 2.1 0.00

2The observed number of cases per 100,000 person years declines steadily, and so does the ratio of observed to expected. Persons who quit due
to doctor’s orders are excluded from the data.

®Years since quit at the beginning of the study is given by 5-year intervals; this is replaced by a truncated mldpomt in the calculation. For example,
a person who quit 5-9 years before 1954 is assumed to have quit in 1947.

cess events in Table 14 may be that sick people quit smok-
ing.) Only the late stage in the model is sensitive; mak-
ing the last stage sensitive instead of the next-to-last
would barely affect Table 6; it would make the under-
prediction problem in Table 14 even worse but would par-
tially correct the overprediction.

As far as we can tell, the excess risk in fact declines with
years since quitting rather than freezing; even the abso-
lute risk (background + excess) declines, quite contrary
to the predictions of the model. Table 14 shows the decline
for the veterans. These data are sparse, so cross-
tabulation to control survivor bias does not seem advisa-
ble; however, controlling for the term dose x (T\™! -
To™!) in Equation 8, as an indicator of risk, does not
change the picture very much. Nor does indirect stan-
dardization on the risk at time of quitting. The spike in
risk at the time of quitting, however, is noticeable.

For the ACS men too, Table 15 shows that the absolute
risk (events per 100,000 person years) declines steadily as
a function of time since quitting. The first line in Table 15
may be an artifact (sick people quit smoking). The last line
may be low due to the missing events for older persons.
Even between lines 2 and 3, there may be a survivor bias:
The men most at risk die early. However, controlling for
age at quitting and dose (by cross-tabulation) makes lit-
tle difference, so survivor bias does not seem to be a big
problem.

The absolute risk does seem to drop with time since
quitting for the veterans and ACS males; the rapid in-
crease predicted by the model simply is not there. To state
the point more sharply, constant excess risk is incompat-

ible with the sensitivity of the first stage, needed so that
age at start influences the response; decreasing excess
risk is incompatible with any of the models fitted here.
(The phenomenon can be incorporated by having random
parameters or a long and variable latency period between
malignancy and death.)

For the British doctors, data on ex-smokers are not
available. However, the risk for ex-smokers seems to be
less than their risk at time of quitting, until 20 years af-
ter quitting; the numbers are small, but in aggregate, the
observed number of events for the ex-smokers is less than
predicted from the risk at time of quitting (57). On the
whole, our results are consistent with this finding [for
other data and reviews, see (58-61)].

For a literature review on lung cancer, see the IARC
monograph (55). With bladder cancer, the risk is consid-
ered to drop when exposure ceases (55). For experimen-
tal results on regression of lesions when carcinogenic in-

Table 15. Observed absolute risk for ACS male ex-smokers .(numbe.r
of lung cancer deaths per 100,000 person years) by years since quit

smoking.
Years since Person- Number Rate per
quit? years of events 100,000 person-years®
<1 42,053 69 164
1-4 97,469 111 114
5-9 201,655 108 54
10+ 66,566 6 9

aYears since quit is at the beginning of the study, in 1959.
bThese are crude rates; standardization does not change the pattern

(54).
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sult stops, see McKenzie and Rous (62); Hennings et al.
(63); and Farber and Sarma (64); in the other direction, see
Littlefield et al. (28). There is further discussion of ex-
smokers in Freedman and Navidi (65) and Gaffney and
Altshuler (66). Gaffney and Altshuler focus on the Brit-
ish doctors. They find declining excess risk after cessa-
tion of smoking, and note the inconsistency with the
Armitage-Doll model. They present an alternative model.

The tension between models for continuing smokers and
ex-smokers seems to be well known. The resolution at-
tempted in Brown and Chu (22) is not satisfying. The mul-
tistage model in that paper is fitted not to data but to out-
put from logistic regressions, which are themselves
inconsistent with the multistage model; the parameters
of the fitted multistage model are allowed to depend on
dose; age and duration of smoking are treated as extra
parameters, constant across subjects, and estimated, even
though the data are available.

Some Technical Issues
Latency

After a cell (or cluster of cells) becomes malignant, some
period of time must elapse until the cancer becomes clin-
ically detectable; and another period of time until death
ensues. These periods of time are the latencies. The first
waiting time is not empirically observable, almost by def-
inition; so there is little direct evidence about its distri-
bution: indirect evidence suggests this time may be ap-
preciable (67,68). (Of course, other evidence might suggest
this time is short.) The second waiting time has been
studied for many human cancers; for lung cancer, it may
be on the order of 18 months.

Latency complicates the modeling problem even fur-
ther. Some authors treat latency as constant across sub-
jects, to be estimated statistically along with the other
parameters in the multistage model; others treat the
latency as following some textbook distribution (like the
Weibull), whose parameters are then estimated. Such as-
sumptions are hard to defend empirically.

Unless noted otherwise, we cut the knot by setting
latency to zero. This has the advantage of simplicity, but
cannot be taken too literally. The problem is serious, be-
cause in the end the data are on times to a clinically de-
tectable end point. If a large part of the distribution for
that time is left unspecified, the model is poorly defined.

As a practical matter, allowing positive latency reduces
the number of estimated stages, by increasing the rate of
change of the fitted hazard function at the relevant time
period.

Independence of Competing Risks

Let 1 be the time to failure for the whole tissue in the
multistage model, namely, the time for the first target cell
to complete its progression through the n stages of the
process. Then the conditional distribution of T given T > t,
is assumed equal to the distribution of t given survival on
test to time t. (In the latter event, we condition not only

that T > t, but that all risks mature after time t.) The as-
sumption of equality is a version of independence of com-
peting risks, which allows the model to be used even when
the data on waiting times are censored by death from
other causes; and in the case of human subjects, by with-
drawal from the study, data selection by the investigators,
ete.

This assumption may not be verifiable from the data
(69), and we can see only two possible defenses: a) It has
been used since the time of Bernoulli; b) it is at present
impossible to do risk modeling any other way.

Pooling

For estimation and testing, it is necessary to arrive at
some definite aggregation of the data, which in our exam-
ples is usually presented in the form of a two- or three-
dimensional cross-tab. It will be advantageous to pool
cells, eliminating the sparse ones. This improves power
(up to a point) and makes the null distribution of the X*
statistic closer to the asymptotic limit; for some empiri-
cal evidence, see Freedman and Navidi (6).

To make the asymptotics of the X* test go through, the
same aggregation must be used for both estimation and
testing. For the lung cancer data sets, the aggregation
was suggested by the age x dose table in Frome and
Checkoway (70). The same four age groups were used for
all cohorts: a) 54 or less; b) 55 to 64; ¢) 65 to 74; and d) 75
or more.

For the British doctors, we chose six dose groups
(cigarettes per day): a) 0; b) 1 to 9; ¢) 10 to 19; d) 20 to 29;
e) 30 to 40; and f) 41 or more. For the veterans and the
ACS volunteers, there were five dose groups as in the raw
data: a) 0; b) 1 to 9; ¢) 10 to 20; d) 21 to 39; and e) 40 or
more. (For the volunteers, group ¢ was 10-19 and group
d was 20-39. Occasional smokers in the veterans cohort
were excluded.)

For the British doctors, there are 4 x 6 = 24 cells in the
aggregated cross-tab (Table 3), 4 garameters ABC,D, and
1 constraint (AD = BC) so the X*s have 24 — 4 + 1 = 21
degrees of freedom. The veterans have 4 cells fewer and
17 degrees of freedom in the X¥s. The ACS data has no
nonsmokers and 13 degrees of freedom.

The next object is to explain how aggregate cross-tabs
are derived from the raw data, with the current smokers
in the British doctors as a first example. The original data
are given in Table 2 and the aggregation in Table 3. To il-
lustrate the arithmetic, the data for ages 55 to 64 and dose
30 to 40 are reproduced from Table 2, as Table 16.

In Table 3, there is a cell corresponding to ages 55 to
64 and dose 30 to 40. The number of events in that cell is
obtained by adding the numbers of events in the basic

Table 16.
Dose, cigarettes/day
Age, years 30-34 35-40
55-59 6/1923 4/1063
60-64 11/1362 7/826




MULTISTAGE MODELS FOR CARCINOGENESIS 181

cells above: 6 + 4 + 11 + 7 = 28, and likewise for the
person-years.

The second example is the veterans’ data. How do we
get from the raw data on the tape to the aggregate data
in Table 7? The raw data can be used to make a three-
dimensional cross-tab of basic cells:

age X age at start of smoking x dose

For nonsmokers, there is only one dimension of interest:
age. For ex-smokers, there are four dimensions: age, age
at start of smoking, age at quitting, dose. The tape reports
year of birth and death; age at start or quit is only
reported by 5-year groups.

For instance, one basic cell in the cross-tab corresponds
to current age 55 to 59, age at start 20 to 24, and smokes
10 to 20 cigarettes per day. Until death, subjects may con-
tribute person years to each basic cell in the three-
dimensional cross-tab and an event if they die of lung
cancer.

Each age x dose group in the aggregate cross-tab is the
result of pooling over a set of basic cells. For example, con-
sider the following cell in the aggregate cross-tab: current
age 55 to 64, smoking 10 to 20 cigarettes per day. Person
years, observeds and expecteds for that cell are obtained
by adding up the numbers for the basic cells in the three-
dimensional cross-tab, corresponding to current age 55 to
59 or 60 to 64; age at start of smoking 5 to 9, or 10 to 14,
... ,or 50 to 54; dose 10 to 20. (We took age at start “less
than 10” as 5-9; likewise, “50 years or older” as 50-54.)

For the ACS volunteers, the data provided to us were
already in the form of a cross-tab, with age and years since
quit for ex-smokers at baseline in 1959. The study period
was 1960 to 1965, so we added 4 years to get current age.
For ex-smokers, age at start was not collected.

By convention, the number of person-years in each basic
cell is treated as a constant in the modeling. Frrom cell to
cell, the numbers of events are taken as independent.

The expected number of events in a basic cell equals the
number of person-years times the hazard rate for that
cell. That is where independence of competing risks
comes in. For example, if persons well along the progres-
sion toward lung cancer were more susceptible to heart
attacks, survival to age t would change the hazard; how-
ever, by the independence assumption, the hazard does
not change.

When computing the hazard function in Equations 1-6,
age and dose are taken as truncated mid-points; for ex-
ample, age 55 to 59 becomes 57, age at start 20 to 24 be-
comes 22, and dose 10 to 19 becomes 15. A dose of 40 or
more is taken a bit arbitrarily, as 50.

Our aggregation was chosen to avoid sparse cells and
to treat all three cohorts in a similar way. However, the
procedure puts little emphasis on the response to T,
which is projected out. (To maximize the likelihood, only
the sum of the expecteds needs to be approximately right,
not their distribution over To.) If the model is right, the
response to Ty can be inferred from the response to age
and dose. For the veterans, the model does not do this at
all well (Table 17). Our aggregation may be criticized as

Table 17. Observed and expected numbers of events for the veterans
by age at start of smoking.

Person-
Age at start years Observed Expected O/E
Less than 10 2,839 11 7 1.6
10-14 32,929 114 79 14
15-19 231,146 562 488 1.2
20-24 145,376 308 334 0.9
25-29 37,312 63 96 0.7
30-34 16,070 22 43 0.5
35-39 8,138 6 22 0.3
40 or more 11,490 7 25 0.3

leading to inefficient procedures; however, they are valid,
and they evidently provide efficient-enough tests.

Models for Animal Data
Introduction

For experimental data on animals, doses are set high,
so the hazard is high, too. The Poisson distribution must
be replaced by the binomial and hazards converted to
probabilities. The process will be illustrated on the mega-
mouse data (27). and the Peto et al. results on skin can-
cer and aging (10) will be considered last.

Mathematical Preliminaries

Let h be the hazard in a multistage model. With the in-
dependence of competing risks, the probability of an ani-
mal getting cancer during the period t to t + s, conditional
on having survived till the beginning of the period, is

t+
1 - exp{-ft sh(u)du}

(9]
= 1-exp{-h(t)s}

For the current-exposure group in the mega-mouse
study, exposure starts at To = 0, and the formulas for h
become simpler. Consider a model with n precancerous
stages, of which m are potentially sensitive. Suppose To
= 0, and exposure is continuous. Let N be the number of
target cells. Assume the rate of progression through stage
iis a; + b; d, when the dose rate is d. The a’s and b’s must
be nonnegative; stage i is potentially sensitive if b; is al-
lowed to be positive; the number of such stages is denoted
m. The hazard rate at time t is essentially as follows (?71):

N,

tn-1
e resy 2

Multiplying t"! in Equation 10, there is a polynomial in
dose of degree m, with nonpositive roots; and only its
m + 1 coefficients can be estimated. In general, data on
the current-exposure group cannot determine which of
the stages are the sensitive ones, although their number
m can be estimated, and only certain products in the basic
parameters N, a;, b; can be estimated. Identifiable
parameters can be obtained by rewriting Equation 10 as
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h(t) = (co+cyd+ -+ +cpd™) ™! [11]

where d is dose and t is time. The ¢’s are estimable; they
should be nonnegative, and the polynomial should have m
nonpositive roots—a constraint which is hard to impose.
To capture the constraints, it is possible to factor the
dose polynomial, rewriting the hazard rate (Eq. 11) as

ol

l(l + l‘jd)]ln—l [12]

The lead constant G is identifiable; and so are the ry’s,
if arranged in decreasing order. These r’s must be non-
negative. For Equation 12 to make sense, the background
rates (the a’s in Eq. 10) must be positive.

With ceased exposure, it matters which states are sen-
sitive. To model the mega-mouse data, we wanted to con-
sider having two early stages sensitive. The calculus gets
out of hand amazingly fast, but a direct computation is
still feasible when the first and second stages are sensi-
tive. If exposure starts at time To = 0 and ends at time
T), the hazard at a later time t is

At
+Bdose [t - (t-T,)%- 6T, (t-T))3)
+ Cdose [t8— (t—T,)"]

+ Ddose [t~ (t=T,)®-6T,(t-T;)°] (3]

Here, A represents background; B, the sensitivity of the
second stage; C, of the first stage; and D, both (4,6).

Mega-Mouse Study

The mega-mouse experiment did not focus on time-to-
tumor, so the results do not fit naturally into the frame-
work of the multistage model. To see the problem more
sharply, take for example the 336 mice assigned to a dose
group of 150 ppm with planned sacrifice at 24 months. Of
these, 130 survived to 24 months and were sacrificed at
that time; among the sacrificed animals, 100 had bladder
tumors. The ratio 100/130 represents prevalence, not in-
cidence. Indeed, it is not known when these tumors de-
veloped.

To model this data set, we entertained two polar as-
sumptions: a) The counts represent incidence, that is,
tumors which arose during the month of sacrifice; b)
tumors are rarely fatal, so the counts represent nearly all
the tumors that arose at or before the sacrifice time.
Either assumption gives about the same likelihood func-
tion for the current exposure group, as will now be dis-
cussed.

The statistical analysis is performed by treating the

number of survivors as constant. The counts in the vari-
ous cells are taken to be independent binomials; the num-
ber of trials is the number at risk in the cell. If assump-
tion a holds, the probability of a mouse getting liver
cancer in month t is given by Equation 9, with s = 1 (the
period is viewed as 1 month). If assumption b holds, the
probability that an animal sacrificed at time t has cancer
is

t
P{t<t) =1 - exp{—jo h(u)du } [14]

In effect, Equation 14 just increases the number of
stages by 1. More specifically, if h is the hazard rate for,
say, a six-stage model with the first and fifth sensitive,
then [b h(u) du is the hazard rate for a seven-stage model,
again with stages one and five sensitive. This follows from
the usual inductive construction of h (4,6). Thus, assump-
tions a and b turn out to differ only in the estimated num-
ber of stages (for the current exposure group anyway). We
proceed, somewhat hesitantly, on the basis of assumption
a.

Data on the mice who died before planned sacrifice are
available on tape, so there is an opportunity for cross-
checking; also see Farmer et al. (29). Combining data from
sacrifice and spontaneous deaths would require explicit
modeling of latency, which has been estimated for blad-
der and liver cancer as being about 6 months (72). Such
modeling requires introducing further assumptions,
which seem as drastic in their own way as assumption a.
For other views, see Kalbfleisch et al. (5) or Malani and
van Ryzin (73).

For the current-exposure group in the mega-mouse ex-
periment, the data are reported in a basic two-
dimensional cross-tab for dose X sacrifice time (28). With
the ceased-exposure group there is a third dimension,
namely, the time at which exposure ended. The cell counts
in the basic cross-tab are taken to be independent
binomial variables; in each cell, the event probability is
given by Equation 9 with s = 1, and the number of trials
is the number of sacrificed animals.

To stabilize the X%, we wanted to avoid sparse cells; nor
was a sum of binomials attractive. Therefore, some dose
x sacrifice groups with low dose or early sacrifice were
eliminated from the fitting. To some extent this choice was
data-driven, but it was treated as deterministic in the
statistical analysis. The impact of this move seems to be
small (6). Of course, in Equation 7 for X2 the denomina-
tors are the binomial variances.

Bladder Tumors. The mega-mouse experiment had two
end points, cancers of the bladder and the liver (transi-
tional cell carcinomas of the urinary bladder and primary
hepatocellular carcinomas). The bladder data are shown
in Table 18.

There are a substantial number of responses only at
high dose and after long exposure and the hazard in-
creases more rapidly in dose than in time. Carlborg dem-
onstrated this by fitting a Weibull hazard of the form
cd®®, witha > b + 1(30,31). Just by way of illustration,
consider the high risk current-exposure groups inside the
marked region of Table 18. Fitting the Weibull hazard
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Table 18. Results on bladder cancer from the mega-mouse study: Number of response/number sacrificed (12,13).

Dose, Sacrifice time, months
ppm 9 12 14 15 16 17 18 24 33
0 0/142 0/140 0/113 0/88 0/183 0/127 1/400 1/384 0/24
30 4/1573 0/900 1/92
35 1/389 1/796 2/638 0/45
45 1/271 1/264 1/383 1/445 0/12
60 0/279 2/268 0/224 1/181 0/265 0/206 3/269 3/415 111
75 0/139 0/137 0/110 1/94 0/175 0/134 1/267 3/311 4/12
100 1/142 1/138 0/117 0/89 1/90 4/67 5/131 25/160* 8/10*
150 0/140 9/141 21/1142 28/90* 36/85* 36/65° 62/121* 100/130*

2Cell used in fitting.

there gives a = 5 and b = 3, roughly. If the rate of in-
crease in dose is faster than the rate in time, Equation 10
cannot hold. On this basis, Carlborg prefers the Weibull
to the multistage. However, the values for a and b are
quite sensitive to the cells used in fitting. Furthermore,
the Weibull did not fit even the handful of cells marked
in Table 18, which represents a third cut at fitting pro-
gressively smaller portions of the data.

We also tried on the high-risk cells four- or five-stage
models with all stages sensitive: a = 4andb = 8,ora =
5 and b = 4. The former is better, but does not fit even
the selected cells, having X*> = 22 on 7 degrees of freedom.
Also, the multistage model predicts 197 cancers in the
censored cells (outside the marked region) with 55 ob-
served; the Weibull model does about the same. In short,
neither the Weibull nor the multistage fits.

Brown and Hoel (12) say a hazard is “factorable” if, like
the multistage hazard in Equation 10, it is a function of
dose X a function of time. They argue that no factorable
hazard function will fit the whole data set. Transforming
the dose scale does not affect factorability and therefore
will not make the model fit. The sparseness of most of the
cells in the table may not affect their analysis too much (6).

Liver Tumors. For liver tumors too, the current-
exposure group seemed the natural starting point. To
stabilize the behavior of the X statistic, it seemed advan-
tageous to develop the models only on part of the data set,
censoring the sparse cells with low dose or early sacrifice.
(For each dose group, we started with the longest ex-
posures, and cut back until cells with two events or fewer
were encountered.)

The models had grotesque chi- squareds, and the
residuals showed most of the problem to come from a dose
of 60 ppm and sacrifice at 24 months. After looking more
closely at the data source (28) we convinced ourselves that

there was a misprint in that cell, which reports 7/415
events, and an incidence rate of 17.1%. The rate looks
plausible, and we changed the numerator to 0.171 x 415
= T1, agreeing with (13). '

Table 19 shows the corrected data; cells used in fitting
are inside the marked region; 27/621 events are censored
(outside the region). We went ahead on the corrected data,
fitting models with hazard rates defined by Equation 11
without the constraint of nonpositive roots, or by Equa-
tion 12 with all constraints imposed. The constraints in
Equation 11 are seldom imposed, so it is worth consider-
ing what happens without them. To illustrate, suppose
n = 7Tand m = 2 so there are seven stages of which two
are sensitive. Equation 11 gives the model

155 + 588d + 896d%, x%2=26.3, lrs=26.2
{14a]

142(1+2.38d)%, x%*=26.7, lrs=26.5
[14b]

Irs is the Neyman-Pearson likelihood ratio statistic of
Equation 8, while X* is defined by Equation 7 with the
binomial variances in the denominators. Equation 11 fits
a little better but the polynomial has imaginary roots. The
double root from Equation 12 seems unlikely; however,
the discriminant of the quadratic has been prevented from
going negative and an end point maximum occurs when
the latter vanishes. In sum, fitting the polynomial with-
out constraints does not lead to a proper multistage
model.

Table 20 reports the results of fitting multistage models
of the form of Equation 12 to the liver tumor data in'the

Table 19. Results on liver cancer from the mega-mouse study: Number of response/number sacrificed (12,13,27).

Dose, Sacrifice time, months
ppm 9 12 14 15 16 17 18 24 33
0 0/142 0/140 0/113 0/88 1/183 0/128 1/401 9/383* 8/23*

30 17/1573* 55/900* 44/92°
35 2/389 717922 55/639* 20/45*
45 2/272 5/264* 7/383* 57/445* 5122
60 0/279 2/268 0/224 1/182 4/265* 6/206 7/268* 71/415% 7112
75 0/139 0/137 0/110 1/94 5/174* 5/134* 6/267* 62/3112 8/122
100 1/142 3/138 1117 4/90 1/90 1/67 6/131* 47/160* 8/10%
150 0/140 1/141 1114 1/90 3/86 0/65 71212 56/130?

Cell used in fitting.



184 FREEDMAN AND NAVIDI

Table 20. Results for the mega-mouse study: Continuous exposure to 2-AAF and resulting liver tumors.?

n m df x? G r) r rs Comment

6 1 25 72 27 11 Does not fit

6 2 24 53 37 2.2 2.2 Does not fit

6 3 23 53 37 2.2 2.2 0.00 Does not fit

7 1 25 48 104 12 p < 5/1000

7 2 24 27 142 24 2.4 Fits, p = 30%

7 3 23 27 142 24 24 0.00 Fits, p = 26%

8 1 25 64 386 14 Does not fit

8 2 24 39 518 2.6 2.6 Marginal fit, p = 3%
8 3 23 39 518 2.6 2.6 0.00 Marginal fit, p = 2%
9 1 25 133 1391 15 Does not fit

9 2 24 109 1789 3.0 3.0 Does not fit

9 3 23 109 1815 29 2.9 0.02 Does not fit r4

9 4 22 109 1815 2.9 29 0.02 Does not fitry = 0

2A seven-stage model fits the data, with two stages sensitive. The parameters express the hazard function (Eq. 12) as a function of d = (dose in
ppm) /100 and t = (time in months) /100. Parameters estimated as 0 are recorded as 0.00.

current exposure group; reported cancers are treated as
incident. The Fisher information matrix usually cannot be
inverted for these models, so standard errors are not
reported. For a simulation study on the accuracy of the
MLE'’s and the minor impact of censoring, see Freedman
and Navidi (6).

The data can be fitted by a multistage model with seven
stages, of which two are sensitive; we saw no pattern in
the residuals. Since exposure starts at birth, the data on
the current-exposure group cannot determine which two
stages out of the seven are the sensitive ones. There are
’C, = 21 models to explore, and it was easiest to begin
with the most familiar: Equations 1, 2, and 3 with the first
and sixth stages sensitive. This is connected with Equa-
tion 12 as follows:

A =G, B = Grl.
C = Gr,, D = Grr, [15]
A=G, B = Gr,,
C = Gr,, D=Grnr; [16)

In the present application, r; and r; are estimated as
equal, so the two models coincide. On the ceased-exposure
group, this model gave X*= 100 on 24 degrees of freedom.
Examination of the residuals showed that most were posi-
tive; predicted risk was too low after exposure ended.
This suggested trying a model with two early stages sen-
sitive, rather than one early and one late: Equation 13.

The coefficients in Equation 13 can be obtained as above
from Equations 15 and 16, giving A = 142/ B = C = 338,
and D = 803. This time, the model fits the ceased-
exposure group: X> = 30 on 24 degrees of freedom (p =
18%), although the residuals suggest that predicted risk
is too low at longer sacrifice times. (Since the choice of
model was data-driven, the p-values are no longer pro-
tected by cross-validation, and are biased toward accept-
ing the model.) Almost as an afterthought, we went back
to the omitted cells with low dose or early exposure (Ta-
ble 19). There were 27 events in these cells, with a
predicted 41. This looks bad, but the censored observa-

tions tend to be the smaller ones. The bootstrap assigns
a p-value of 14% to a test based on the statistic
“predicted-observed” for the censored cells (6).

We then looked at the eight-stage model with first and
second stages sensitive. This was marginal on the main
group of cells, and looked fine on the censored ones (26
predicted, 27 observed, although the bias is still there).
The model did not fit the ceased-exposure group (x> = 41
on 24 degrees of freedom). Again, the residuals were too
positive. .

Brown and Hoel

Brown and Hoel (13) fit a multistage model to the liver
data. We fully agree with their conclusion:

The way in which dose is represented in the model may be very
consequential, and [this] illustrates the basic difficulties one may
encounter when attempting to conclude with confidence anything
about the initiation/promotion mechanisms based on tumor count
data.

In general terms, our results are consistent with theirs,
but there are some points of disagreement: we like seven
stages with two sensitive, they like six stages with one
sensitive, or four with two sensitive. They seem to be fol-
lowing assumption b and Equation 14, so seven of our
stages correspond to six of theirs; however, we cannot fit
a seven-stage model with one sensitive, or a five-stage
model with two sensitive.

One reason for the discrepancies seems to be Brown
and Hoel’s decision to eliminate the group sacrificed at 33
months, based on examination of residual plots; the plots
may show the heterogeneity we picked up in cross-
validation. Another reason is the choice of functional
form: they include a constant latency parameter, make a
nonstandard adjustment for background, and have a dose
threshold effect.

We are using x> = X (obs-exp)*/var, Brown and Hoel are
using Irs. However, by our reckoning, fitting the seven-
stage model with two stages sensitive on all 56 cells gives
Irs = 64 or X*> = 65, with 53 degrees of freedom, so this
may not matter. On the interpretation in the presence of
sparse cells, see Freedman and Navidi (6). The estimated
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r’s from fitting to all 56 cells were quite different from
those in Table 20, being 3.32 and 1.56, respectively; G was
about the same, at 141.

Peto Mice

Peto et al, report on an experiment with four treatment
groups, benzpyrene being applied starting at 10 weeks,
25 weeks, 40 weeks, and 55 weeks (10). Peto et al. chart
the tumors fortnightly, and Table 21 reproduces some of
the data from their Appendix for weeks of benzpyrene 40
through 58.

As we understand it, the first line in the table reports
the number of tumors that developed during the weeks
39 and 40 of treatment and were charted at week 40; this
line also reports the corresponding number of animals at
risk. In group 1, there were no tumors and 130 animals
at risk, and so forth. We did not use data prior to chart-
ing at week 40 or after week 90 when the cells get very
sparse.

For group 3 and week 54, there seems to be a
typographical error (10) which is noted in Table 21;
presumably, the number of animals at risk is 166, not 116,
and we have used 166 in the analysis below. The data are
collapsed as shown in Table 22: for group 1, the number
of tumors appearing at weeks 40,42, ... ,50is0 + t ...
+ 2 = 8, and the number at risk is 130 + 128 + ... + 121
= 753. The other entries in Table 22 are similar.

The counts in the pooled cells are modeled as binomial,

the number of trials being the sum of the number of
animals at risk in the basic cells, as shown in Table 22, and
the probability of an event is the average of the probabil-
ities given by Equation 9, weighted by the numbers at
risk; time t is measured in weeks, and s = 2 (a fortnight
is 2 weeks). This procedure seems to give a reasonable ap-
proximation to a sum of independent binomials, since the
multistage probabilities do not change much from fort-
night to fortnight. If X; are independent binomials with
N; trials and event probability p;, and the p; are not too
variable, then X; + X; is approximately binomial with N,
+ N, trials and event probability p = (N1p1 + N2p2)/ (N}
+ Nz)

In this study, there was only one dose group; the units
are chosen so dose = 1, and then dose 2 = dose. The C and
D terms in Equations 1-3 collapse, so only A, B, C + D
can be estimated. Since AD = BC, the separate coeffi-
cients C and D can be determined if all are positive.

The results are shown in Table 23 and suggest A = B
=0, so C and D are not estimated separately. The numer-
ical algorithm we used would not maximize the likelihood
function with the constraint that all coefficients be non-
negative, so negative values are allowed. The parameter
estimates are so close to the boundary that the Fisher
standard errors are not reliable; however, standard errors
can be obtained by the bootstrap.

The model has been fitted to only one dose group and
predicts no background, for A and B are negligible. This
is impressive. The interpretation of zeros: f A = B = D

Table 21. Data from Peto et al. (10) for weeks 40 to 58.

Group 1 Group 2 Group 3 Group 4
Weeks of (BP from age (BP from age (BP from age (BP from age
benzpyrene 10 weeks) 25 weeks) 40 weeks) 55 weeks)
40 0/130 0/154 1/292 1/311
42 1/128 1/154 0/190 1/303
44 1/126 0/150 1/187 3/296
46 2/125 2/149 0/182 2/286
48 2/123 5/146 1/181 2/275
50 2/121 0/141 0/176 3/265
52 6/119 4/141 2/172 1/255
54 2/113 3/137 1/116° 6/239
56 3/111 4/130 4/162 9/222
58 10/108 4/126 4/154 10/203

2This is a probable typographical error: The number of mice at risk cannot drop from 172 to 116 and then go back up to 162.

Table 22. Peto mice: Observed skin cancers/numbers at risk.

Weeks of Age at start of exposure, weeks

benzpyrene 10 25 40 55
40-50 8/753 8/894 3/1108 12/1736
52-54 8/232 71278 3/338* 7/1494
56-58 13/219 8/256 8/316 19/425
60-62 13/187 16/229 12/286 26/345
64-66 12/162 15/188 20/239 18/243
68-70 16/132 27/150 16/184 21/175
72-74 15/95 14/96 15/139 13/118
76-78 5/68 13/67 16/93 /76
80-82 7/51 6/43 7/65 8/36
84-88 9/31 11/36 12/58 2/33

2A probable error has been corrected.
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Table 23. Results for the Peto mice.*

n A B C+D x? Comment

5 -3 -4 251 ki Does not fit

6 14 -18 350 67 Does not fit,
p = 2/1000

7 34 -35 481 81 Does not fit

8 68 -67 651 117 Does not fit

aThere are 37 degrees of freedom in the X% The hazard is per week,
and the coefficients should be divided by 102"+,

= 0 and C > 0, the first stage is the only sensitive one
and the only one with no background rate. If A =B =C
= 0and D > 0, then the first and next-to-last stages are
sensitive but have no background rates; the other stages
have positive background rates. f A = B = 0 but C >
0and D > 0, then the first and next-to-last stages are sen-
sitive; all stages but the first have positive background
rates (6). If the first and next-to-last stages are both sen-
sitive, the dose response would be quadratic: Peto et al.
were concerned whether their results are compatible with
quadratic dose response (10).

Partly on biological grounds by mainly on statistical
ones, Peto et al. adopted a 28-week latency period be-
tween the transition to the cancerous state for a cell and
the appearance of a tumor. As a result, they fit a hazard
rate of the form (duration — 28)%, that is, a four-stage
model. We do not use the lag, and find a six-stage model
gives the best fit, with a X*> = 67 on 37 degrees of free-
dom; the lagged model fits a little better with X* = 60.
Results might be cross-validated on data in Lee and
O’Neill (74).

The large values of X* in Table 23 are mainly due to two
or three cells, where the differences between observed
and expected are substantial. This could have been an ar-
tifact of the aggregation. So we reaggregated, making
some effort to eliminate the discrepancies. (The second
pooling: 40-52, 54-56, 58-60, 62-64, 66-68, 70-72, 74-76,
78-80, 82-84, 86-88.) The estimated coefficients stayed
about the same, but the X* only dropped imperceptibly,
from 67 to 64. The incidence rates are sufficiently irregu-
lar that we stopped trying to fit models.

Peto et al. are trying to show that cancer results from
the duration of exposure to the carcinogen, rather than
the effect of time per se. The experiment and the associ-
ated arguments are interesting but hardly conclusive,
even setting aside the question of whether the model fits
the data.

In the multistage framework, the rate of progression
through the stages depends on dose but not time and that
seems to be a critical point in the argument. If, for exam-
ple, the rate of progression through a stage really was
time-dependent, Peto et al. might agree that time per se
plays a role in carcinogenesis. But the stages in the model
are not experimentally identified; so we can produce a
model where one stage has a time-dependent hazard rate,
and the overall hazard rate is exactly the same as in the
best multistage model. In short, if the stages are not iden-
tifiable, neither is the duration versus age issue. To fin-
ish the argument we put up the multistage model and the
alternative.

The best-fitting multistage model (with no latency, A =
B = ¢) is of the form

(C dose + D dose?) duration®

This corresponds to a six-stage model, in which the back-
ground rate for the first stage vanishes; the first stage
and possibly the fifth are sensitive; hazard rates for the
six stages do not depend on time. For now, call this the
“C - D model.”

Consider next an alternative model with four stages:
The first stage has the same hazard rate as the first stage
in the C - D model; the third stage has the same hazard
rate as the fifth stage in the C - D model; the fourth stage
has the same hazard rate as the sixth stage in the C - D
model; the remaining second stage has a time-dependent
hazard rate, h (t) = constant t2.

In this alternative model, a cell starts to age only after
it has been moved out of stage one by the benzpyrene,
which is not so far-fetched, given that Peto et al. are
studying a tumor that does not occur spontaneously. The
hazard rate in the second stage is time-dependent, so time
per se plays a role in carcinogenesis. In short, no argu-
ment about the effect of time itself seems likely to suc-
ceed until the stages are better defined.

The alternative model may seem artificial, but no more
so than the multistage model itself. The construction may
also prompt the question, Why should the hazard rate be
time-dependent? However, insisting on multistage models
with hazard rates be depending only on dose is simply to
decide the question of age versus duration on an a priort
basis.

Technical Details
Fisher Standard Errors

Let L (X|0) be the likelihood of the data X given the
vector of parameters ©. The Fisher information matrix
I(©) is defined as

2
1©)=-E d°logL(X1©)
00?2 [16a)
The expected value is computed with respect to ©.
Asymptotically, the inverse of 1(©) gives the variance-
covariance matrix of the MLE, at ©. Ordinarily, the MLE
© will be substituted for 6, to get a sample-based esti-
mate. The Fisher SEs are the square roots of the diagonal
elements of 1(@). In particular, these can be computed
from the data; the unknown parameter is not involved.
Observed information may also be used.

Regularity conditions are given in Lehmann (36), for ex-
ample, and exclude cases where © falls on the boundary,
corresponding to 0’s for B or C in the present application.
For some positive results on the boundary, see Freedman
and Navidi (6).

The matrix I(©) is nonnegative definite, but not neces-
sarily positive definite. With the mega-mouse liver data,
at the MLE 6, we found 1(©) to be rank-deficient, suggest-
ing a singular distribution for ©.
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Computational Details

Most of the computer work was done in FORTRAN on
a VAX 750, with many of the calculations replicated some-
what independently in True BASIC on an IBM PC-XT. A
few were replicated quite independently by Duncan
Thomas at USC, but this does not imply that he agrees
(or disagrees) with our conclusions.

To find the maximum of the log likelihood function, we
used a computer routine written by NAG (Numerical Al-
gorithm Group). This starts searching from a given ini-
tial point; it either reports failure to converge or finds the
maxium. Usually, as best we can tell, it does find the
global maximum; occasionally, it is fooled by a local max-
imum.

The algorithm was started from several points to see if
there were multiple maxima and derivatives of the likeli-
hood function were checked at each reported value to
make sure this was at least a local maximum. In almost
all the data sets described above, the algorithm found only
one value, which we believe to be the global maximum.
There was an exception: in fitting all 56 cells of the mega-
mouse liver data, NAG’s first pick was a saddle point on
the line r; = r»,
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